75 research outputs found

    Search for boosted diphoton resonances in the 10 to 70 GeV mass range using 138 fb−1 of 13 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for diphoton resonances in the mass range between 10 and 70 GeV with the ATLAS experiment at the Large Hadron Collider (LHC) is presented. The analysis is based on pp collision data corresponding to an integrated luminosity of 138 fb−1 at a centre-of-mass energy of 13 TeV recorded from 2015 to 2018. Previous searches for diphoton resonances at the LHC have explored masses down to 65 GeV, finding no evidence of new particles. This search exploits the particular kinematics of events with pairs of closely spaced photons reconstructed in the detector, allowing examination of invariant masses down to 10 GeV. The presented strategy covers a region previously unexplored at hadron colliders because of the experimental challenges of recording low-energy photons and estimating the backgrounds. No significant excess is observed and the reported limits provide the strongest bound on promptly decaying axion-like particles coupling to gluons and photons for masses between 10 and 70 GeV

    Evidence for the charge asymmetry in pp → tt¯ production at s√ = 13 TeV with the ATLAS detector

    Get PDF
    Inclusive and differential measurements of the top–antitop (ttÂŻ) charge asymmetry AttÂŻC and the leptonic asymmetry Aℓℓ¯C are presented in proton–proton collisions at s√ = 13 TeV recorded by the ATLAS experiment at the CERN Large Hadron Collider. The measurement uses the complete Run 2 dataset, corresponding to an integrated luminosity of 139 fb−1, combines data in the single-lepton and dilepton channels, and employs reconstruction techniques adapted to both the resolved and boosted topologies. A Bayesian unfolding procedure is performed to correct for detector resolution and acceptance effects. The combined inclusive ttÂŻ charge asymmetry is measured to be AttÂŻC = 0.0068 ± 0.0015, which differs from zero by 4.7 standard deviations. Differential measurements are performed as a function of the invariant mass, transverse momentum and longitudinal boost of the ttÂŻ system. Both the inclusive and differential measurements are found to be compatible with the Standard Model predictions, at next-to-next-to-leading order in quantum chromodynamics perturbation theory with next-to-leading-order electroweak corrections. The measurements are interpreted in the framework of the Standard Model effective field theory, placing competitive bounds on several Wilson coefficients

    Inclusive-photon production and its dependence on photon isolation in pp collisions at s√ = 13 TeV using 139 fb−1 of ATLAS data

    Get PDF
    Measurements of differential cross sections are presented for inclusive isolated-photon production in pp collisions at a centre-of-mass energy of 13 TeV provided by the LHC and using 139 fb−1 of data recorded by the ATLAS experiment. The cross sections are measured as functions of the photon transverse energy in different regions of photon pseudorapidity. The photons are required to be isolated by means of a fixed-cone method with two different cone radii. The dependence of the inclusive-photon production on the photon isolation is investigated by measuring the fiducial cross sections as functions of the isolation-cone radius and the ratios of the differential cross sections with different radii in different regions of photon pseudorapidity. The results presented in this paper constitute an improvement with respect to those published by ATLAS earlier: the measurements are provided for different isolation radii and with a more granular segmentation in photon pseudorapidity that can be exploited in improving the determination of the proton parton distribution functions. These improvements provide a more in-depth test of the theoretical predictions. Next-to-leading-order QCD predictions from JETPHOX and SHERPA and next-to-next-to-leading-order QCD predictions from NNLOJET are compared to the measurements, using several parameterisations of the proton parton distribution functions. The measured cross sections are well described by the fixed-order QCD predictions within the experimental and theoretical uncertainties in most of the investigated phase-space region

    Measurements of Zγ+jets differential cross sections in pp collisions at s√ = 13 TeV with the ATLAS detector

    Get PDF
    Differential cross-section measurements of Zγ production in association with hadronic jets are presented, using the full 139 fb−1 dataset of s√ = 13 TeV proton–proton collisions collected by the ATLAS detector during Run 2 of the LHC. Distributions are measured using events in which the Z boson decays leptonically and the photon is usually radiated from an initial-state quark. Measurements are made in both one and two observables, including those sensitive to the hard scattering in the event and others which probe additional soft and collinear radiation. Different Standard Model predictions, from both parton-shower Monte Carlo simulation and fixed-order QCD calculations, are compared with the measurements. In general, good agreement is observed between data and predictions from MATRIX and MiNNLOPS, as well as next-to-leading-order predictions from MADGRAPH5_AMC@NLO and SHERPA

    Search for third-generation vector-like leptons in pp collisions at s√ = 13 TeV with the ATLAS detector

    Get PDF
    A search for vector-like leptons in multilepton (two, three, or four-or-more electrons plus muons) final states with zero or more hadronic τ-lepton decays is presented. The search is performed using a dataset corresponding to an integrated luminosity of 139 fb−1 of proton-proton collisions at a centre-of-mass energy of 13 TeV recorded by the ATLAS detector at the LHC. To maximize the separation of signal and background, a machine-learning classifier is used. No excess of events is observed beyond the Standard Model expectation. Using a doublet vector-like lepton model, vector-like leptons coupling to third-generation Standard Model leptons are excluded in the mass range from 130 GeV to 900 GeV at the 95% confidence level, while the highest excluded mass is expected to be 970 GeV

    Search for flavour-changing neutral current interactions of the top quark and the Higgs boson in events with a pair of τ-leptons in pp collisions at s√ = 13 TeV with the ATLAS detector

    Get PDF
    A search for flavour-changing neutral current (FCNC) tqH interactions involving a top quark, another up-type quark (q = u, c), and a Standard Model (SM) Higgs boson decaying into a τ-lepton pair (H → τ+τ−) is presented. The search is based on a dataset of pp collisions at s√ = 13 TeV that corresponds to an integrated luminosity of 139 fb−1 recorded with the ATLAS detector at the Large Hadron Collider. Two processes are considered: single top quark FCNC production in association with a Higgs boson (pp → tH), and top quark pair production in which one of top quarks decays into Wb and the other decays into qH through the FCNC interactions. The search selects events with two hadronically decaying τ-lepton candidates (τhad) or at least one τhad with an additional lepton (e, ÎŒ), as well as multiple jets. Event kinematics is used to separate signal from the background through a multivariate discriminant. A slight excess of data is observed with a significance of 2.3σ above the expected SM background, and 95% CL upper limits on the t → qH branching ratios are derived. The observed (expected) 95% CL upper limits set on the t → cH and t → uH branching ratios are 9.4×10−4(4.8+2.2−1.4×10−4) and 6.9×10−4(3.5+1.5−1.0×10−4), respectively. The corresponding combined observed (expected) upper limits on the dimension-6 operator Wilson coefficients in the effective tqH couplings are Ccϕ < 1.35 (0.97) and Cuϕ < 1.16 (0.82)

    Charged-hadron production in pp, p+Pb, Pb+Pb, and Xe+Xe collisions at sNN−−−√ = 5 TeV with the ATLAS detector at the LHC

    Get PDF
    This paper presents measurements of charged-hadron spectra obtained in pp, p+Pb, and Pb+Pb collisions at s√ or sNN−−−√ = 5.02 TeV, and in Xe+Xe collisions at sNN−−−√ = 5.44 TeV. The data recorded by the ATLAS detector at the LHC have total integrated luminosities of 25 pb−1, 28 nb−1, 0.50 nb−1, and 3 ÎŒb−1, respectively. The nuclear modification factors RpPb and RAA are obtained by comparing the spectra in heavy-ion and pp collisions in a wide range of charged-particle transverse momenta and pseudorapidity. The nuclear modification factor RpPb shows a moderate enhancement above unity with a maximum at pT ≈ 3 GeV; the enhancement is stronger in the Pb-going direction. The nuclear modification factors in both Pb+Pb and Xe+Xe collisions feature a significant, centrality-dependent suppression. They show a similar distinct pT-dependence with a local maximum at pT ≈ 2 GeV and a local minimum at pT ≈ 7 GeV. This dependence is more distinguishable in more central collisions. No significant |η|-dependence is found. A comprehensive comparison with several theoretical predictions is also provided. They typically describe RAA better in central collisions and in the pT range from about 10 to 100 GeV

    A search for new resonances in multiple final states with a high transverse momentum Z boson in s√ = 13 TeV pp collisions with the ATLAS detector

    Get PDF
    A generic search for resonances is performed with events containing a Z boson with transverse momentum greater than 100 GeV, decaying into e+e− or ÎŒ+Ό−. The analysed data collected with the ATLAS detector in proton-proton collisions at a centre-of-mass energy of 13 TeV at the Large Hadron Collider correspond to an integrated luminosity of 139 fb−1. Two invariant mass distributions are examined for a localised excess relative to the expected Standard Model background in six independent event categories (and their inclusive sum) to increase the sensitivity. No significant excess is observed. Exclusion limits at 95% confidence level are derived for two cases: a model-independent interpretation of Gaussian-shaped resonances with the mass width between 3% and 10% of the resonance mass, and a specific heavy vector triplet model with the decay mode Wâ€Č → ZW → ℓℓqq

    Measurement of electroweak Z(ΜΜ) Îłjj production and limits on anomalous quartic gauge couplings in pp collisions at s√ = 13 TeV with the ATLAS detector

    Get PDF
    The electroweak production of Z(ÎœÎœÂŻÂŻÂŻ)Îł in association with two jets is studied in a regime with a photon of high transverse momentum above 150 GeV using proton–proton collisions at a centre-of-mass energy of 13 TeV at the Large Hadron Collider. The analysis uses a data sample with an integrated luminosity of 139 fb−1 collected by the ATLAS detector during the 2015–2018 LHC data-taking period. This process is an important probe of the electroweak symmetry breaking mechanism in the Standard Model and is sensitive to quartic gauge boson couplings via vector-boson scattering. The fiducial Z(ÎœÎœÂŻÂŻÂŻ)Îłjj cross section for electroweak production is measured to be 0.77+0.34−0.30 fb and is consistent with the Standard Model prediction. Evidence of electroweak Z(ÎœÎœÂŻÂŻÂŻ)Îłjj production is found with an observed significance of 3.2σ for the background-only hypothesis, compared with an expected significance of 3.7σ. The combination of this result with the previously published ATLAS observation of electroweak Z(ÎœÎœÂŻÂŻÂŻ)Îłjj production yields an observed (expected) signal significance of 6.3σ (6.6σ). Limits on anomalous quartic gauge boson couplings are obtained in the framework of effective field theory with dimension-8 operators

    Search for a new scalar resonance in flavour-changing neutral-current top-quark decays t → qX (q = u, c), with X → bb¯¯, in proton-proton collisions at s√ = 13 TeV with the ATLAS detector

    Get PDF
    A search for flavour-changing neutral-current decays of a top quark into an up-type quark (either up or charm) and a light scalar particle X decaying into a bottom anti-bottom quark pair is presented. The search focuses on top-quark pair production where one top quark decays to qX, with X → bb¯¯, and the other top quark decays according to the Standard Model, with the W boson decaying leptonically. The final state is thus characterised by an isolated electron or muon and at least four jets. Events are categorised according to the multiplicity of jets and jets tagged as originating from b-quarks, and a neural network is used to discriminate between signal and background processes. The data analysed correspond to 139 fb−1 of proton–proton collisions at a centre-of-mass energy of 13 TeV, recorded with the ATLAS detector at the LHC. The 95% confidence-level upper limits between 0.019% and 0.062% are derived for the branching fraction B(t → uX) and between 0.018% and 0.078% for the branching fraction B(t → cX), for masses of the scalar particle X between 20 and 160 GeV
    • 

    corecore